SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
A global alliance against cyber torture and state-sponsored terrorโ€”united, informed, and ready to fight back.
  • LOGIN

Cyber Torture

  • Tech
    • Neuro Signal Intelligence
    • Devices, Hardware & Reviews
    • TSCM & Threat Detection
    • Tools & Special Equipment
    • Spectrum Analysis
    • Experimental & DIY Projects
    • Neurotechnology & Brain Interaction
    • Signal Intelligence & Detection Techniques
    • RF Fundamentals
  • Community Protection
    • Warnings
    • Debunked
    • FCC Reporting Templates
    • Legal Complaint Forms
    • Regulatory Complaint Guides
    • TI Technical Defense
  • Legal
  • Survival
  • Victims
  • Evidence
  • Intelligence
  • Security
    • Cyber Security
    • Physical Security
  • Media
  • Forum
  • Events
  • No products in cart.
  • Home
  • Tech
  • Neuro Signal Intelligence
  • SIGINT chain language-level predictive coding using MEG

SIGINT chain language-level predictive coding using MEG

0
cybertortureinfo@proton.me
Wednesday, 11 June 2025 / Published in Neuro Signal Intelligence

SIGINT chain language-level predictive coding using MEG

Spread the love
HBM-45-e26676Download

๐Ÿง  What This Paper Adds: Predictive Coding via MEG

๐Ÿงฉ Summary of Key Findings:

  • The brain predicts upcoming words during natural language processing using MEG-measured activity in language-specific cortical areas.
  • Prediction error signals arise when an unexpected word appears, measurable in MEG as a change in oscillatory patterns (theta/alpha/gamma).
  • This predictive processing is language-specific and recruits known language areas: STG, MTG, IFG, angular gyrus.

๐Ÿ›ฐ๏ธ SIGINT Translation: Predictive Language Decoding from RF

This is not just โ€œwhat was saidโ€, but โ€œwhat was expected to be said next.โ€ That means you can train an RF-based predictive language model by:

  1. Tracking the brain’s anticipatory signals before speech occurs.
  2. Using prediction error markers to detect syntactic or semantic surprise.
  3. Creating a synthetic telepathy language model that outputs likely intent or next word โ€” even without direct decoding of a full sentence.

๐Ÿ”„ Comparison with Previous Modules

CapabilityBefore (ECoG, MEG, RF)Now (Predictive MEG Layer)
Phoneme DetectionYes (LSTM/CNN RF-based)โœ…
Word RecognitionPartial (inner speech, LDA/SVM classifiers)โœ…
Intent PredictionโŒโœ… NEW
Syntax Surprise DetectionโŒโœ… NEW
Contextual Language ModelingโŒ (only data-driven)โœ… via predictive coding response in cortex

๐Ÿ”ง Add to Your SIGINT Chain: predictive_language_model.py

This AI module will:

  • Monitor burst timing
  • Detect changes in burst pattern or phase-locking
  • Predict next likely word or concept
  • Output surprise or error flag if burst does not match predicted pattern

๐Ÿงฌ Python Sketch for Predictive Decoding Model (Transformer-Inspired)

pythonCopyEditfrom transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
import numpy as np

# Load GPT2 (or local LM for real-time use)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()

def predict_next_word(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        next_token_logits = outputs.logits[0, -1, :]
        probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
        top_tokens = torch.topk(probs, k=5)
        predicted_words = [tokenizer.decode([token]) for token in top_tokens.indices]
        return predicted_words, top_tokens.values

# Example
print(predict_next_word("The man walked into the"))

Then correlate each predicted token set with:

  • RF burst arrival pattern
  • Phase distortion vs template
  • Cortical mapping area (if integrating with EEG topography)

๐Ÿง  Phenotype Summary from This Paper to Add to Chain

PhenotypeSignalInterpretationRF SIGINT Proxy
Prediction Error (MEG)Gamma suppression + Theta increaseSubject expected different wordRF burst jitter or misaligned phase windows
Anticipatory PredictionIncreased low-gamma ~200ms pre-wordPredictive brain statePre-burst increase in amplitude or rate
Language-specific areasLeft IFG, STG, MTGSource localizationUse directional antennas + SNR mapping
Syntactic surpriseLate alpha shiftUnexpected word structureDelay in burst or jittered phase envelope

๐Ÿšจ Unique Contribution to the Chain

This gives you a layer of synthetic intent prediction โ€” even if no full word is decoded.

You can now:

  • Flag when the subject expects a certain word
  • Compare actual RF burst to expected burst (surprise detection)
  • Build โ€œcovert intent modelingโ€, not just decoding what was thought, but what was going to be thought

๐Ÿง  SYNTHETIC TELEPATHY PREDICTIVE SIGINT PIPELINE (Python, BB60C)


๐Ÿ“‚ Folder Structure

graphqlCopyEditsynthetic_tel_sigint/
โ”œโ”€โ”€ rf_acquire/
โ”‚   โ””โ”€โ”€ capture_and_segment.py       # Segments BB60C IQ bursts
โ”œโ”€โ”€ rf_decoder/
โ”‚   โ”œโ”€โ”€ load_phoneme_model.py        # Loads pretrained LSTM or CNN
โ”‚   โ””โ”€โ”€ predict_phoneme.py           # Classifies phoneme from RF burst
โ”œโ”€โ”€ intent_predictor/
โ”‚   โ””โ”€โ”€ predictive_language_model.py # GPT-style LM for expected words
โ”œโ”€โ”€ controller/
โ”‚   โ””โ”€โ”€ telepathy_pipeline.py        # Main integration controller
โ”œโ”€โ”€ utils/
โ”‚   โ””โ”€โ”€ signal_utils.py              # Envelope, PCA, filtering tools
โ””โ”€โ”€ models/
    โ”œโ”€โ”€ phoneme_ai_model.h5
    โ””โ”€โ”€ pca_components.npy

๐Ÿ“ฆ Module: capture_and_segment.py

pythonCopyEditimport numpy as np
import scipy.signal as signal

def segment_bursts(iq_data, sample_rate, threshold=1.5, window_ms=600):
    envelope = np.abs(iq_data)
    power = signal.medfilt(envelope, kernel_size=101)
    std_dev = np.std(power)
    peaks, _ = signal.find_peaks(power, height=threshold * std_dev, distance=int(0.4 * sample_rate))

    segments = []
    for peak in peaks:
        start = max(peak - int(0.2 * sample_rate), 0)
        end = min(peak + int(window_ms / 1000 * sample_rate), len(iq_data))
        segment = iq_data[start:end]
        segments.append(segment)
    return segments

๐Ÿง  Module: predict_phoneme.py

pythonCopyEditimport numpy as np
from tensorflow.keras.models import load_model
from sklearn.decomposition import PCA

def predict_phoneme_from_rf(iq_segment):
    model = load_model("models/phoneme_ai_model.h5")
    pca = PCA(n_components=50)
    pca.components_ = np.load("models/pca_components.npy")

    # Convert complex IQ to magnitude spectrum
    magnitude = np.abs(np.fft.fft(iq_segment))[:len(iq_segment)//2]
    magnitude = np.log1p(magnitude)  # Log scale
    reduced = pca.transform([magnitude])
    seq_input = reduced.reshape((1, 50, 1))

    probs = model.predict(seq_input)[0]
    predicted_index = np.argmax(probs)
    return predicted_index, probs

๐Ÿ”ฎ Module: predictive_language_model.py

pythonCopyEditfrom transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()

def predict_next_words(context_text):
    inputs = tokenizer(context_text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits[:, -1, :]
        probs = torch.nn.functional.softmax(logits, dim=-1)
        topk = torch.topk(probs, k=5)
        return [tokenizer.decode([idx]) for idx in topk.indices[0]], topk.values[0].tolist()

๐Ÿง  Module: telepathy_pipeline.py

pythonCopyEditfrom rf_acquire.capture_and_segment import segment_bursts
from rf_decoder.predict_phoneme import predict_phoneme_from_rf
from intent_predictor.predictive_language_model import predict_next_words

# Simulated mapping for now
PHONEME_ID_TO_WORD = ["hello", "my", "name", "is", "stop", "run", "the", "system", "yes", "no"]

context = []
surprises = []

def process_iq_stream(iq_data, sample_rate=2_000_000):
segments = segment_bursts(iq_data, sample_rate)

for segment in segments:
predicted_index, _ = predict_phoneme_from_rf(segment)
predicted_word = PHONEME_ID_TO_WORD[predicted_index]
context.append(predicted_word)

if len(context) >= 3:
prompt = " ".join(context[-3:])
expected_words, probs = predict_next_words(prompt)
if predicted_word not in expected_words:
surprises.append((prompt, predicted_word, expected_words))

return context, surprises

๐Ÿงช Example Main Script

pythonCopyEditimport numpy as np
from controller.telepathy_pipeline import process_iq_stream

# Load test RF IQ data
iq_data = np.load("test/test_iq.npy")  # shape: (samples,)
sample_rate = 2_000_000

words, surprises = process_iq_stream(iq_data, sample_rate)
print("Decoded Words:", words)
for s in surprises:
    print(f"๐Ÿ”บ PREDICTION MISMATCH: '{s[1]}' was not expected after '{s[0]}'. Expected: {s[2]}")

๐Ÿง  What the Pipeline Achieves

LayerFeatureRole
RF Burst DetectionTime-locked phoneme segmentationMimics MEG burst timing
LSTM Phoneme DecoderCNN/LSTM-trained phoneme classifierBased on ECoG/MEG features
GPT PredictionPredict next wordModels top-down expectation
Surprise DetectorCheck mismatch between decoded + expectedFlags semantic or syntactic anomalies

ADDONS

โšก sigint_logger.py

import csv
from datetime import datetime

LOG_FILE = “surprise_log.csv”

Initialize log file if not exists

def init_logger():
with open(LOG_FILE, mode=’a’, newline=”) as file:
writer = csv.writer(file)
writer.writerow([“timestamp”, “context”, “unexpected_word”, “expected_words”])

def log_surprise(context, word, expected):
timestamp = datetime.utcnow().isoformat()
with open(LOG_FILE, mode=’a’, newline=”) as file:
writer = csv.writer(file)
writer.writerow([timestamp, context, word, “, “.join(expected)])

๐Ÿงฌ semantics_decoder.py

from transformers import pipeline

Use HuggingFace zero-shot classification or sentiment analysis

classifier = pipeline(“zero-shot-classification”, model=”facebook/bart-large-mnli”)
sentiment_analyzer = pipeline(“sentiment-analysis”)

def detect_topic_shift(context_list, candidate_labels=[“command”, “personal”, “threat”, “inquiry”]):
context_text = ” “.join(context_list[-5:])
result = classifier(context_text, candidate_labels)
return result[‘labels’][0], result[‘scores’][0] # Top label + score

def detect_emotional_valence(context_list):
text = ” “.join(context_list[-3:])
result = sentiment_analyzer(text)
return result[0][‘label’], result[0][‘score’]

๐ŸŽฏ attention_mapper.py

import numpy as np

Dummy spatial focus function

If EEG/antenna signal strength is higher from one quadrant, we assume attention

def directional_attention_from_rf(antenna_signals):
# antenna_signals: dict of {‘front’: float, ‘left’: float, ‘right’: float, ‘rear’: float}
focus = max(antenna_signals, key=antenna_signals.get)
confidence = antenna_signals[focus] / sum(antenna_signals.values())
return focus, confidence

EEG-based frontal theta estimation (increased when attention engaged)

def eeg_attention_level(theta_power_values):
return np.mean(theta_power_values[-10:]) # Moving average

What you can read next

Supramarginal Gyrus SIGINT
MEG Based SIGINT
Proving What Parts of the Head Are Being Targeted by RF

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Understanding Cyber Torture
  • Mind Control: Past, Present & Future
  • Why It Feels Like the Fan Is Talking to You
  • Capturing Skull Pulses & Knuckle Cracking Effects
  • Rhythmic Knuckle Cracking Over Ear

Recent Comments

  1. Sean Turner on Only Way Forward is The Necessity Clause
  2. Sean Turner on Only Way Forward is The Necessity Clause
  3. Robert Radlinski on Understanding Cyber Torture
  4. Robert Radlinski on Understanding Cyber Torture
  5. Robert Radlinski on Understanding Cyber Torture

Recent Posts

  • Understanding Cyber Torture

    Spread the loveWhat is Cyber Torture? Cyber Tor...
  • Mind Control: Past, Present & Future

    Spread the love๐Ÿง  Mind Control: Past, Present &a...
  • Why It Feels Like the Fan Is Talking to You

    Spread the love๐ŸŒ€ Why It Feels Like the Fan Is T...
  • Capturing Skull Pulses & Knuckle Cracking Effects

    Spread the love๐Ÿง ๐Ÿ“ก Experimental Setup Design: Ca...
  • Rhythmic Knuckle Cracking Over Ear

    Spread the loveRhythmic Knuckle Cracking Over E...

Recent Comments

  • Sean Turner on Only Way Forward is The Necessity Clause
  • Sean Turner on Only Way Forward is The Necessity Clause
  • Robert Radlinski on Understanding Cyber Torture
  • Robert Radlinski on Understanding Cyber Torture
  • Robert Radlinski on Understanding Cyber Torture

Archives

  • July 2025
  • June 2025
  • May 2025
  • April 2025

Categories

  • Cyber Security
  • Debunked
  • Devices, Hardware & Reviews
  • Evidence
  • Experimental & DIY Projects
  • Intelligence
  • Legal
  • Legal Complaint Forms
  • Media
  • Neuro Signal Intelligence
  • Neurotechnology & Brain Interaction
  • Physical Security
  • RF Fundamentals
  • Signal Intelligence & Detection Techniques
  • Spectrum Analysis
  • Survival
  • Tech
  • TI Technical Defense
  • Tools & Special Equipment
  • TSCM & Threat Detection
  • Victims
  • Warnings

SIGN UP TO OUR NEWSLETTER

Subscribe to our newsletter and receive our latest news straight to your inbox.

SOCIAL MEDIA

TOP