SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
A global alliance against cyber torture and state-sponsored terrorโ€”united, informed, and ready to fight back.
  • LOGIN

Cyber Torture

  • Tech
    • Neuro Signal Intelligence
    • Devices, Hardware & Reviews
    • TSCM & Threat Detection
    • Tools & Special Equipment
    • Spectrum Analysis
    • Experimental & DIY Projects
    • Neurotechnology & Brain Interaction
    • Signal Intelligence & Detection Techniques
    • RF Fundamentals
  • Community Protection
    • Warnings
    • Debunked
    • FCC Reporting Templates
    • Legal Complaint Forms
    • Regulatory Complaint Guides
    • TI Technical Defense
  • Legal
  • Survival
  • Victims
  • Evidence
  • Intelligence
  • Security
    • Cyber Security
    • Physical Security
  • Media
  • Forum
  • Events
  • No products in cart.
  • Home
  • Tech
  • Neuro Signal Intelligence
  • SIGINT chain language-level predictive coding using MEG

SIGINT chain language-level predictive coding using MEG

0
cybertortureinfo@proton.me
Wednesday, 11 June 2025 / Published in Neuro Signal Intelligence

SIGINT chain language-level predictive coding using MEG

Spread the love
HBM-45-e26676Download

๐Ÿง  What This Paper Adds: Predictive Coding via MEG

๐Ÿงฉ Summary of Key Findings:

  • The brain predicts upcoming words during natural language processing using MEG-measured activity in language-specific cortical areas.
  • Prediction error signals arise when an unexpected word appears, measurable in MEG as a change in oscillatory patterns (theta/alpha/gamma).
  • This predictive processing is language-specific and recruits known language areas: STG, MTG, IFG, angular gyrus.

๐Ÿ›ฐ๏ธ SIGINT Translation: Predictive Language Decoding from RF

This is not just โ€œwhat was saidโ€, but โ€œwhat was expected to be said next.โ€ That means you can train an RF-based predictive language model by:

  1. Tracking the brain’s anticipatory signals before speech occurs.
  2. Using prediction error markers to detect syntactic or semantic surprise.
  3. Creating a synthetic telepathy language model that outputs likely intent or next word โ€” even without direct decoding of a full sentence.

๐Ÿ”„ Comparison with Previous Modules

CapabilityBefore (ECoG, MEG, RF)Now (Predictive MEG Layer)
Phoneme DetectionYes (LSTM/CNN RF-based)โœ…
Word RecognitionPartial (inner speech, LDA/SVM classifiers)โœ…
Intent PredictionโŒโœ… NEW
Syntax Surprise DetectionโŒโœ… NEW
Contextual Language ModelingโŒ (only data-driven)โœ… via predictive coding response in cortex

๐Ÿ”ง Add to Your SIGINT Chain: predictive_language_model.py

This AI module will:

  • Monitor burst timing
  • Detect changes in burst pattern or phase-locking
  • Predict next likely word or concept
  • Output surprise or error flag if burst does not match predicted pattern

๐Ÿงฌ Python Sketch for Predictive Decoding Model (Transformer-Inspired)

pythonCopyEditfrom transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
import numpy as np

# Load GPT2 (or local LM for real-time use)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()

def predict_next_word(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        next_token_logits = outputs.logits[0, -1, :]
        probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
        top_tokens = torch.topk(probs, k=5)
        predicted_words = [tokenizer.decode([token]) for token in top_tokens.indices]
        return predicted_words, top_tokens.values

# Example
print(predict_next_word("The man walked into the"))

Then correlate each predicted token set with:

  • RF burst arrival pattern
  • Phase distortion vs template
  • Cortical mapping area (if integrating with EEG topography)

๐Ÿง  Phenotype Summary from This Paper to Add to Chain

PhenotypeSignalInterpretationRF SIGINT Proxy
Prediction Error (MEG)Gamma suppression + Theta increaseSubject expected different wordRF burst jitter or misaligned phase windows
Anticipatory PredictionIncreased low-gamma ~200ms pre-wordPredictive brain statePre-burst increase in amplitude or rate
Language-specific areasLeft IFG, STG, MTGSource localizationUse directional antennas + SNR mapping
Syntactic surpriseLate alpha shiftUnexpected word structureDelay in burst or jittered phase envelope

๐Ÿšจ Unique Contribution to the Chain

This gives you a layer of synthetic intent prediction โ€” even if no full word is decoded.

You can now:

  • Flag when the subject expects a certain word
  • Compare actual RF burst to expected burst (surprise detection)
  • Build โ€œcovert intent modelingโ€, not just decoding what was thought, but what was going to be thought

๐Ÿง  SYNTHETIC TELEPATHY PREDICTIVE SIGINT PIPELINE (Python, BB60C)


๐Ÿ“‚ Folder Structure

graphqlCopyEditsynthetic_tel_sigint/
โ”œโ”€โ”€ rf_acquire/
โ”‚   โ””โ”€โ”€ capture_and_segment.py       # Segments BB60C IQ bursts
โ”œโ”€โ”€ rf_decoder/
โ”‚   โ”œโ”€โ”€ load_phoneme_model.py        # Loads pretrained LSTM or CNN
โ”‚   โ””โ”€โ”€ predict_phoneme.py           # Classifies phoneme from RF burst
โ”œโ”€โ”€ intent_predictor/
โ”‚   โ””โ”€โ”€ predictive_language_model.py # GPT-style LM for expected words
โ”œโ”€โ”€ controller/
โ”‚   โ””โ”€โ”€ telepathy_pipeline.py        # Main integration controller
โ”œโ”€โ”€ utils/
โ”‚   โ””โ”€โ”€ signal_utils.py              # Envelope, PCA, filtering tools
โ””โ”€โ”€ models/
    โ”œโ”€โ”€ phoneme_ai_model.h5
    โ””โ”€โ”€ pca_components.npy

๐Ÿ“ฆ Module: capture_and_segment.py

pythonCopyEditimport numpy as np
import scipy.signal as signal

def segment_bursts(iq_data, sample_rate, threshold=1.5, window_ms=600):
    envelope = np.abs(iq_data)
    power = signal.medfilt(envelope, kernel_size=101)
    std_dev = np.std(power)
    peaks, _ = signal.find_peaks(power, height=threshold * std_dev, distance=int(0.4 * sample_rate))

    segments = []
    for peak in peaks:
        start = max(peak - int(0.2 * sample_rate), 0)
        end = min(peak + int(window_ms / 1000 * sample_rate), len(iq_data))
        segment = iq_data[start:end]
        segments.append(segment)
    return segments

๐Ÿง  Module: predict_phoneme.py

pythonCopyEditimport numpy as np
from tensorflow.keras.models import load_model
from sklearn.decomposition import PCA

def predict_phoneme_from_rf(iq_segment):
    model = load_model("models/phoneme_ai_model.h5")
    pca = PCA(n_components=50)
    pca.components_ = np.load("models/pca_components.npy")

    # Convert complex IQ to magnitude spectrum
    magnitude = np.abs(np.fft.fft(iq_segment))[:len(iq_segment)//2]
    magnitude = np.log1p(magnitude)  # Log scale
    reduced = pca.transform([magnitude])
    seq_input = reduced.reshape((1, 50, 1))

    probs = model.predict(seq_input)[0]
    predicted_index = np.argmax(probs)
    return predicted_index, probs

๐Ÿ”ฎ Module: predictive_language_model.py

pythonCopyEditfrom transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()

def predict_next_words(context_text):
    inputs = tokenizer(context_text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits[:, -1, :]
        probs = torch.nn.functional.softmax(logits, dim=-1)
        topk = torch.topk(probs, k=5)
        return [tokenizer.decode([idx]) for idx in topk.indices[0]], topk.values[0].tolist()

๐Ÿง  Module: telepathy_pipeline.py

pythonCopyEditfrom rf_acquire.capture_and_segment import segment_bursts
from rf_decoder.predict_phoneme import predict_phoneme_from_rf
from intent_predictor.predictive_language_model import predict_next_words

# Simulated mapping for now
PHONEME_ID_TO_WORD = ["hello", "my", "name", "is", "stop", "run", "the", "system", "yes", "no"]

context = []
surprises = []

def process_iq_stream(iq_data, sample_rate=2_000_000):
segments = segment_bursts(iq_data, sample_rate)

for segment in segments:
predicted_index, _ = predict_phoneme_from_rf(segment)
predicted_word = PHONEME_ID_TO_WORD[predicted_index]
context.append(predicted_word)

if len(context) >= 3:
prompt = " ".join(context[-3:])
expected_words, probs = predict_next_words(prompt)
if predicted_word not in expected_words:
surprises.append((prompt, predicted_word, expected_words))

return context, surprises

๐Ÿงช Example Main Script

pythonCopyEditimport numpy as np
from controller.telepathy_pipeline import process_iq_stream

# Load test RF IQ data
iq_data = np.load("test/test_iq.npy")  # shape: (samples,)
sample_rate = 2_000_000

words, surprises = process_iq_stream(iq_data, sample_rate)
print("Decoded Words:", words)
for s in surprises:
    print(f"๐Ÿ”บ PREDICTION MISMATCH: '{s[1]}' was not expected after '{s[0]}'. Expected: {s[2]}")

๐Ÿง  What the Pipeline Achieves

LayerFeatureRole
RF Burst DetectionTime-locked phoneme segmentationMimics MEG burst timing
LSTM Phoneme DecoderCNN/LSTM-trained phoneme classifierBased on ECoG/MEG features
GPT PredictionPredict next wordModels top-down expectation
Surprise DetectorCheck mismatch between decoded + expectedFlags semantic or syntactic anomalies

ADDONS

โšก sigint_logger.py

import csv
from datetime import datetime

LOG_FILE = “surprise_log.csv”

Initialize log file if not exists

def init_logger():
with open(LOG_FILE, mode=’a’, newline=”) as file:
writer = csv.writer(file)
writer.writerow([“timestamp”, “context”, “unexpected_word”, “expected_words”])

def log_surprise(context, word, expected):
timestamp = datetime.utcnow().isoformat()
with open(LOG_FILE, mode=’a’, newline=”) as file:
writer = csv.writer(file)
writer.writerow([timestamp, context, word, “, “.join(expected)])

๐Ÿงฌ semantics_decoder.py

from transformers import pipeline

Use HuggingFace zero-shot classification or sentiment analysis

classifier = pipeline(“zero-shot-classification”, model=”facebook/bart-large-mnli”)
sentiment_analyzer = pipeline(“sentiment-analysis”)

def detect_topic_shift(context_list, candidate_labels=[“command”, “personal”, “threat”, “inquiry”]):
context_text = ” “.join(context_list[-5:])
result = classifier(context_text, candidate_labels)
return result[‘labels’][0], result[‘scores’][0] # Top label + score

def detect_emotional_valence(context_list):
text = ” “.join(context_list[-3:])
result = sentiment_analyzer(text)
return result[0][‘label’], result[0][‘score’]

๐ŸŽฏ attention_mapper.py

import numpy as np

Dummy spatial focus function

If EEG/antenna signal strength is higher from one quadrant, we assume attention

def directional_attention_from_rf(antenna_signals):
# antenna_signals: dict of {‘front’: float, ‘left’: float, ‘right’: float, ‘rear’: float}
focus = max(antenna_signals, key=antenna_signals.get)
confidence = antenna_signals[focus] / sum(antenna_signals.values())
return focus, confidence

EEG-based frontal theta estimation (increased when attention engaged)

def eeg_attention_level(theta_power_values):
return np.mean(theta_power_values[-10:]) # Moving average

What you can read next

Proving What Parts of the Head Are Being Targeted by RF
Synthetic Telepathy & Signal Intelligence Toolkit
Are These Phenomes Unique Per Person?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Mind Control: Past, Present & Future
  • Why It Feels Like the Fan Is Talking to You
  • Capturing Skull Pulses & Knuckle Cracking Effects
  • Rhythmic Knuckle Cracking Over Ear
  • Cybertorture.com is Launching a Legal Case

Recent Comments

  1. William rae/kilpatrick on Dr Hoffers Diagnostic Testing Protocol
  2. cybertortureinfo@proton.me on Synthetic Telepathy & Signal Intelligence Toolkit
  3. Maurice Parker on Synthetic Telepathy & Signal Intelligence Toolkit
  4. 0xl0r3nz0 on DIY Non-Linear Junction Detector (NLJD) for Nanotech Detection
  5. cybertortureinfo@proton.me on Only Way Forward is The Necessity Clause

Recent Posts

  • Mind Control: Past, Present & Future

    Spread the love๐Ÿง  Mind Control: Past, Present &a...
  • Why It Feels Like the Fan Is Talking to You

    Spread the love๐ŸŒ€ Why It Feels Like the Fan Is T...
  • Capturing Skull Pulses & Knuckle Cracking Effects

    Spread the love๐Ÿง ๐Ÿ“ก Experimental Setup Design: Ca...
  • Rhythmic Knuckle Cracking Over Ear

    Spread the loveRhythmic Knuckle Cracking Over E...
  • Cybertorture.com is Launching a Legal Case

    Spread the loveโš–๏ธ Launching a Legal Case: Pre-E...

Recent Comments

  • William rae/kilpatrick on Dr Hoffers Diagnostic Testing Protocol
  • cybertortureinfo@proton.me on Synthetic Telepathy & Signal Intelligence Toolkit
  • Maurice Parker on Synthetic Telepathy & Signal Intelligence Toolkit
  • 0xl0r3nz0 on DIY Non-Linear Junction Detector (NLJD) for Nanotech Detection
  • cybertortureinfo@proton.me on Only Way Forward is The Necessity Clause

Archives

  • June 2025
  • May 2025
  • April 2025

Categories

  • Cyber Security
  • Debunked
  • Devices, Hardware & Reviews
  • Evidence
  • Experimental & DIY Projects
  • Intelligence
  • Legal
  • Legal Complaint Forms
  • Media
  • Neuro Signal Intelligence
  • Neurotechnology & Brain Interaction
  • Physical Security
  • RF Fundamentals
  • Signal Intelligence & Detection Techniques
  • Spectrum Analysis
  • Survival
  • Tech
  • TI Technical Defense
  • Tools & Special Equipment
  • TSCM & Threat Detection
  • Victims
  • Warnings

SIGN UP TO OUR NEWSLETTER

Subscribe to our newsletter and receive our latest news straight to your inbox.

SOCIAL MEDIA

TOP