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Abstract

Aphasia is a communication disorder that affects processing of language at different

levels (e.g., acoustic, phonological, semantic). Recording brain activity via Electroen-

cephalography while people listen to a continuous story allows to analyze brain

responses to acoustic and linguistic properties of speech. When the neural activity

aligns with these speech properties, it is referred to as neural tracking. Even though

measuring neural tracking of speech may present an interesting approach to studying

aphasia in an ecologically valid way, it has not yet been investigated in individuals

with stroke-induced aphasia. Here, we explored processing of acoustic and linguistic

speech representations in individuals with aphasia in the chronic phase after stroke

and age-matched healthy controls. We found decreased neural tracking of acoustic

speech representations (envelope and envelope onsets) in individuals with aphasia. In

addition, word surprisal displayed decreased amplitudes in individuals with aphasia

around 195 ms over frontal electrodes, although this effect was not corrected for

multiple comparisons. These results show that there is potential to capture language

processing impairments in individuals with aphasia by measuring neural tracking of

continuous speech. However, more research is needed to validate these results.

Nonetheless, this exploratory study shows that neural tracking of naturalistic, contin-

uous speech presents a powerful approach to studying aphasia.
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Practitioner Points

• Individuals with aphasia display decreased encoding of acoustic speech properties (envelope

and its onsets) in comparison to healthy controls.

• Neural responses to word surprisal reveal decreased amplitudes in individuals with aphasia

around 195 ms processing time (not corrected for multiple comparisons).

• Neural tracking of natural speech can be used to study speech processing impairments in

aphasia.
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1 | INTRODUCTION

About one third of strokes result in aphasia, a language disorder that

can impact auditory comprehension, oral production, writing, and/or

reading (Engelter et al., 2006; National Aphasia Association, 2022;

Pasley & Knight, 2013). Aphasia can impact communication to differ-

ent degrees, ranging from subtle to severe impairments, and from

recovery within hours after stroke to permanent language impair-

ments. The severity and persistence depend on factors such as lesion

location and size, brain plasticity, therapy, intrinsic motivation, and

social support (Cordella et al., 2022; Pasley & Knight, 2013;

Schevenels et al., 2020, 2022). In order to be effective, speech ther-

apy should be given with high intensity and the content should be tai-

lored to the specific problems of each individual with aphasia (IWA;

Brady, 2022; Engelter et al., 2006; Rohde et al., 2018; Schevenels

et al., 2020). Individually tailored therapy requires a precise diagnosis

of language impairments.

Although diagnostic tests originally focused on the classic aphasia

typology (i.e., assessing performance on fluency, comprehension, and

repetition tasks), neuroimaging studies have suggested that focusing

on the different language processing components (i.e., acoustic, pho-

nological, semantic, syntactic) is more in line with the neural networks

of language processing (e.g., the dual-stream model by Hickok &

Poeppel, 2007; Pasley & Knight, 2013; Rohde et al., 2018;

Tremblay & Dick, 2016; Wilson et al., 2023). Fridriksson et al. (2018)

suggest that lesions in the dorsal stream (i.e., sensori-motor integra-

tion) may impair phonological processing, whereas damage to the ven-

tral stream (i.e., acoustic-semantic integration) may impair semantic

processing. Hence, a neuroimaging approach focused on the linguistic

aspects may yield more precise diagnostic insights and a more effec-

tive therapeutic approach (Pasley & Knight, 2013; Tremblay &

Dick, 2016). Moreover, behavioral testing after stroke is difficult

because in 80% of cases, IWA 1 year poststroke have comorbid cogni-

tive problems, such as memory, executive functions and/or attention

problems, which can bias the results or even impede behavioral test-

ing (El Hachioui et al., 2014; Fonseca et al., 2018). Further, behavioral

tests consist of artificial tasks that do not always correspond to com-

munication abilities in daily life. Thus, to provide targeted intervention

and improve recovery outcomes, an aphasia diagnosis that provides

precise insights, that is less dependent on cognitive performance and

that is more ecologically valid is needed.

Electroencephalography (EEG) provides ways to study the brain's

responses to speech with reduced active participation of the patient.

By averaging the EEG signal in response to a large number of repeti-

tive sound or speech stimuli, peaks in specific time ranges have been

consistently identified in neurotypicals, that is, event-related poten-

tials (ERPs), offering a window into the spatiotemporal patterns of the

neural response to speech. This way, ERPs related to acoustic

(e.g., P1–N1–P2 complex; Harris, 2020; Martin et al., 2008) and lin-

guistic (e.g., N400; Hillyard & Kutas, 1984; Kutas & Federmeier, 2011;

Nieuwland et al., 2020) aspects of speech have been identified. In

IWA, altered ERPs have been found across language processing levels

and across a variety of experimental stimuli and tasks (Aerts

et al., 2015; Becker & Reinvang, 2007; Chang et al., 2016; Ilvonen

et al., 2001, 2004; Kawohl et al., 2010; Khachatryan et al., 2017;

Kielar et al., 2012; Lice & Palmovi�c, 2017; Ofek et al., 2013; Pettigrew

et al., 2005; Pulvermüller et al., 2004; Räling et al., 2016; Robson

et al., 2017; Sheppard et al., 2017). Most of these studies have

reported decreased amplitudes and increased latencies in IWA as

compared with healthy controls, with the exception of the P2 in Aerts

et al. (2015) and Ilvonen et al. (2001), which observed opposite pat-

terns. Some of these studies have found ERP amplitudes or latencies

to be correlated with language performance (Khachatryan et al., 2017;

Pettigrew et al., 2005; Robson et al., 2017).

The potential of ERPs to serve as evaluatory measure of interven-

tion effects has recently been reviewed by Cocquyt et al. (2020), who

concluded that there is potential for ERPs to assess levels of aphasia

symptoms, after development of normative data. However, to date

ERPs are not commonly used in the clinic. This is likely due to small

sample sizes and the heterogeneity of aphasia symptoms within the

studied samples (Silkes & Anjum, 2021), which complicates the devel-

opment of validated norms for ERPs. While ERPs are useful to under-

stand the functional meaning of different peaks in the spatiotemporal

patterns of the neural response, their application in aphasia diagnos-

tics poses further challenges, for example, long administration time

due to different paradigms at distinct speech processing levels and

the need for a large number of repetitive stimuli to average across

(Kandylaki & Bornkessel-Schlesewsky, 2019). Moreover, listening to

repetitive and artificially created stimuli is not representative of every-

day language situations that IWA struggle with mostly (Le

et al., 2018). More naturalistic speech stimuli, such as a narrative,

would present a more ecologically valid stimulus to analyze the brain's

response to speech (Ding & Simon, 2012; Gillis et al., 2022;

Hamilton & Huth, 2018; Kandylaki & Bornkessel-Schlesewsky, 2019;

Lalor & Foxe, 2010).

From the narrative, different characteristics or representations of

speech can be derived and their relation to the EEG signal can be

measured. When the neural signals align with the speech properties, it

is referred to as neural tracking. By examining the data in this way,

spatial and temporal neural response properties in response to multi-

ple speech representation levels (e.g., acoustic, phonological, seman-

tic, syntactic) can be analyzed from the same data (Brodbeck

et al., 2018; Di Liberto et al., 2015; Gillis et al., 2021, 2022; Mesik

et al., 2021). Moreover, a measure of the strength with which the dif-

ferent speech representations are encoded in the EEG signal can be

computed. Research has shown that even relatively short EEG record-

ings (i.e., 10–20 min) can provide valid results with this approach

(Di Liberto & Lalor, 2017). Furthermore, limited active participation is

required from the participant during such a paradigm, which is espe-

cially advantageous for testing IWA. These characteristics make neural

tracking an ideal tool to study aphasia.

Examining neural tracking, the most frequently studied speech

representation to date is the speech envelope, consisting of the slow

amplitude modulations of speech over time (Aiken & Picton, 2008).

The envelope presents an essential cue for speech intelligibility

(Aiken & Picton, 2008; Shannon et al., 1995). Whereas envelope
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tracking has not yet been investigated in individuals with stroke-

induced aphasia, Dial et al. (2021) have explored it in individuals with

primary progressive aphasia (PPA). Individuals with the logopenic vari-

ant of this neurodegenerative disease displayed increased envelope

tracking compared with healthy controls in the theta band (Dial

et al., 2021). On the other hand, envelope tracking in other disorders,

such as developmental dyslexia, have shown decreased envelope

tracking compared with controls in the 1–8 Hz range, though the

results were largely driven by the delta band (Di Liberto et al., 2018).

These studies show that neural tracking of continuous speech pre-

sents a promising new avenue to study language disorders.

While envelope tracking is mostly considered an acoustic process

in the literature, it has been found to be affected by speech intelligibil-

ity and higher-level speech-specific processes (Broderick et al., 2019;

Peelle et al., 2013; Prinsloo & Lalor, 2022; Vanthornhout et al., 2018).

This is not surprising given that the speech envelope also encom-

passes important cues for segmentation (i.e., rise and fall times to

identify acoustic edges) of the continuous speech signal into discrete

units (i.e., phonemes, syllables, words, phrases; Aiken & Picton, 2008).

Moreover, the syllable stress is also comprised in the envelope, which

gives the listener an indication of the prosody and thus even conveys

linguistic information. Given this entanglement of acoustic and linguis-

tic cues, the speech envelope alone may not be ideal to find specific

neurophysiological correlates of acoustic, phonological, and lexical

semantic processing in aphasia.

Recently, neural tracking of higher-level linguistic speech repre-

sentations has been investigated, that is, speech representations con-

taining information about phonemes and words that take into account

linguistic context (Brodbeck et al., 2018; Broderick et al., 2018; Gillis

et al., 2021; Weissbart et al., 2019). This way, it has been observed

that older adults, in comparison to younger adults, have an altered

neural response to linguistic processes (Broderick et al., 2021; Gillis

et al., 2023; Mesik et al., 2021). To date, higher-level linguistic speech

representations have not been investigated in IWA via neural tracking,

although higher-level speech processing impairments at the phonolog-

ical and semantic level are reported most frequently in IWA

(in contrast to acoustic processing impairments).

In the present study, we investigated neural tracking of acoustic

and linguistic speech representations in individuals with poststroke

aphasia and healthy, age-matched controls. To this end, EEG data

were acquired while participants listened to a continuous story, of

which eight speech representations were derived. The envelope and

envelope onsets were considered to be acoustic representations of

speech. The phoneme and word onsets were considered representa-

tions of speech segmentation, that is, at the interface between acous-

tic and linguistic information. Finally, phoneme surprisal and phoneme

entropy were considered to be linguistic representations at the pho-

neme level, while word surprisal and word frequency were regarded

as linguistic representations at the word level, that is, related to lexical

meaning. For the linguistic speech representations, we controlled the

variance explained by acoustic cues and vice-versa, as we aimed to

disentangle different levels of speech processing. Ultimately, disen-

tangling mechanisms at different levels of speech processing is

necessary to investigate whether neural tracking will be useful as a

diagnostic tool for aphasia that provides information about different

speech processing aspects. Here, our aim as a first step toward this

goal was to explore group differences between IWA and healthy con-

trols based on neural tracking of the different speech representations.

Specifically, we studied group differences regarding the strength of

neural tracking, that is, how well the brain tracks specific aspects

of speech, and regarding how the spatiotemporal pattern of the neural

response operates during continuous speech perception. Based on

the aforementioned ERP and neural tracking studies, we expected to

observe group differences in speech representations at both acoustic

and linguistic levels.

2 | MATERIALS AND METHODS

2.1 | Participants

We tested 41 IWA in the chronic phase after stroke (≥6 months) and

24 healthy controls that were age-matched at group-level. Two IWA

had to be excluded post hoc—one because no lesion could be found

in the left hemisphere and one because we did not have access to any

lesion information—resulting in a sample size of 39 IWA. IWA were

recruited in two ways. Between October 2018 and April 2022 (with a

corona virus disease (COVID)-19-related break between March and

June 2020), patients were recruited via daily screening at the stroke

unit of the university hospital Leuven (score ≤ cutoff threshold on the

Language Screening Test [LAST] Flamand-Roze et al., 2011) or via

advertising the study in speech-language pathologists' practices and

rehabilitation center (patients with a formal aphasia diagnosis; see

Figure S1, for a detailed flowchart). Healthy age-matched controls

were recruited via flyers positioned in recreational community centers

for elderly. The target age of healthy controls was gradually adapted

based on the mean age of IWA included in the study (Figure S2). The

participants in this study are partly overlapping with participants in

Kries et al. (2023).

For data collection, we only included IWA that had no formal

diagnosis of a psychiatric or neurodegenerative disorder and that had

a left-hemispheric or bilateral lesion. All aphasia participants were

tested in the chronic phase after stroke (time since stroke onset in

months median [range]: 16.1 [6–126.1]). The aphasia sample was

checked for language impairments at the moment of data collection

using two standardized diagnostic aphasia tests, that is, the diagnostic

test ScreeLing Visch-Brink et al. (2010) and the Dutch picture-naming

test (Nederlandse Benoemtest [NBT]; Van Ewijk et al., 2020, using the

same procedure as reported in Kries et al., 2023). The ScreeLing was

administered on a tablet using the Gorilla Experiment Builder (http://

www.gorilla.sc; Anwyl-Irvine et al., 2020). The average score by group

is reported in Table 1. We included individuals that scored either

(1) below the cut-off threshold (ScreeLing threshold: 68/72 points;

NBT threshold: 255/276 points) on at least one of these two tests at

the moment of data collection (n = 27; Table S1 and Figure S3), or

(2) had a documented language impairment in the acute phase
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(n = 12). Note that 10 out of the latter 12 IWA still followed speech-

language therapy at the time of data collection (Table S1).

All participants were Dutch native speakers from Flanders,

Belgium. Informed consent was obtained from all participants for the

recruitment via screening and for the data collection in the chronic

phase. The study received ethical approval by the medical ethical

committee of KU Leuven and UZ Leuven (S60007) and is in accor-

dance with the declaration of Helsinki.

In Table 1, we summarized demographic information by

group (details can be found in Table S1). Age, sex, education,

handedness and multilinguality did not differ between groups

(age: W = 464, p = .96; sex: χ2 ¼0, df=1, p=1; education:

χ2 ¼7:26, df=4, p= .1; handedness: χ2 ¼0:063, df=2, p= .98; multi-

lingual: χ2 ¼0:182, df=1, p= .66). Details about the stroke in IWA,

that is, time since stroke onset, stroke type, occluded blood vessel,

lesion location and speech-language therapy, can be found in

Table S1. To visualize the damaged brain tissue of IWA, a lesion

overlap image was created (Figure 1). More information on the lesion

delineation process can be found in Section S1.1.4. Demographic

information was acquired via a self-reported questionnaire. Handed-

ness was assessed via the Edinburgh Handedness Inventory

(Oldfield, 1971).

2.2 | Behavioral measures that serve as covariates

2.2.1 | Hearing

Hearing thresholds were assessed via pure tone audiometry (PTA) at

frequencies ranging from 0.25 to 4 kHz. In case the hearing thresholds

below 4 kHz were >25 dB hearing loss (HL), this information was used

to increase the amplitude of stimulus presentation during the EEG

measurement. The PTA thresholds at 0.25, 0.5, and 1 kHz were aver-

aged and then divided in half to come to the amount of dB that was

TABLE 1 Demographics, language-diagnostic information, and covariates by group.

Control Aphasia

Group

difference

Demographics

Age in years, mean (SD)a 71.5 (7) 69.5 (12.4) n.s.

Sex, n(%)

Female 8 (33.3%) 13 (33.3%) n.s.

Male 16 (66.7%) 26 (66.7%)

Education, n (%)

Primary education 0 (0%) 3 (7.7%)n.s. n.s.

Secondary education 5 (20.8%) 15 (38.4%)

Tertiary education/college 8 (33.3%) 10 (25.6%)

Master's degree 9 (37.5%) 11 (28.2%)

PhD 2 (8.3%) 0 (0%)

Handedness, n (%)

Right 22 (91.6%) 35 (89.7%) n.s.

Left 1 (4.2%) 2 (5.1%)

Ambidextrous 1 (4.2%) 2 (5.1%)

Multilingual, n (%)

Yes 22 (91.7%) 33 (84.6%) n.s.

No 2 (8.3%) 6 (15.3%)

Language diagnostic tests

ScreeLing (max = 72), mean (SD) 69.9 (2.5) 61.5 (9.4) ***

Picture naming (max = 276), mean (SD) 271.3 (4.1) 224.7 (58.1) ***

Covariates

Hearing (Fletcher index in dB hearing loss [HL]),

mean (SD)

24.5 (12) 28.4 (14.1) n.s.

Cognition (OCS composite score in %), mean (SD) 94.2 (4.7) 80.4 (16.6) **

Alertness (Likert scale), median (range) 4.75 (3.5–5) 3.5 (2–5) **

Fatigue (Likert scale), median (range) 1.5 (1–4.5) 3.5 (1–4.5) **

Note: n.s., not significantly different; **p < .01; ***p < .001.
aAge is also used as a covariate.
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added to the stimulus presentation amplitude of 60 dB SPL during the

EEG paradigm. This calculation was done for each ear separately.

After a short example stimulus, participants were asked whether the

loudness was comfortable and if necessary the presentation volume

was adjusted. The degree of volume adjustment did not differ

between groups (W = 170, p = .8). Furthermore, hearing thresholds

were used as covariates in statistical models (Section 2.4). For this

purpose, the Fletcher index (average of hearing thresholds at 0.5,

1, and 2 kHz) was calculated per ear and subsequently averaged

across both ears. The Fletcher index did not differ between IWA and

healthy controls (W = 541.5, p = .29, confidence interval: [�2.49 10];

Table 1).

2.2.2 | Cognition

The Oxford Cognitive Screen-NL was administered to assess cognitive

functioning (Huygelier et al., 2019). This test was designed to be

language-independent, such that cognitive functioning can be disen-

tangled from language functioning, which is especially important for

IWA. Due to limited time in the testing protocol, we chose to only

assess 4/10 subscales, that is, attention and hemispatial neglect, read-

ing, executive functioning, and memory. Hemispatial neglect was used

as a means to potentially exclude participants in case they had too

severe hemineglect, which could bias outcomes at most of the admin-

istered tests. However, the highest hemineglect score was still at a

very mild level and thus we decided to not exclude any participants

based on hemispatial neglect.

The task to assess attention consisted of crossing out target

shapes among distractor shapes. The task to assess executive func-

tions consisted of connecting circles and triangles in alternation in

descending order of size. The memory task consisted of free recall

and recognition of words (from the sentence read for the reading task)

and shapes. These three tasks were used to calculate a composite

score of cognitive functioning. This score was calculated by trans-

forming the raw scores of each test into percentages and then averag-

ing across the three outcomes. The composite score was used to

regress out differences in cognitive functioning to explore neural

tracking differences between groups. The cognition composite score

was significantly lower in IWA than in healthy controls

(W = 209.5, p < .001).

2.2.3 | Alertness and fatigue

Given that the experimental protocol (behavioral and EEG testing)

was relatively long, especially considering that IWA often have cogni-

tive impairments (e.g., attention), we decided to monitor the alertness

and tiredness or fatigue at three time points throughout the experi-

mental protocol (referred to as t1, t2, and t3). In Figure S4E, the

experimental protocol with reference to the timing of the alertness

and fatigue questions is visualized. t1 was administered right at the

start of the testing session, t2 after the EEG measurement and t3 at

the end of the experimental protocol. Participants had to indicate on a

Likert scale of 1 to 5 how alert and how tired they were at that

moment. The questions were presented visually and auditory at the

same time, as visualized in Figure S4A,B. In Section S4, we describe

the results of the interaction analysis between group and time points

(Figure S4C,D and Section S1.1.5). Given that neural tracking has been

shown to be influenced by attention (Lesenfants & Francart, 2020),

we used the average ratings of t1 and t2 of the alertness and fatigue

scale respectively as covariates in the analysis concerning group dif-

ferences in neural tracking of speech. The average of t1 and t2 scores

was specifically used because the EEG measurement took place in

between these moments. A group difference was found for alertness

(W = 243, p = .002) and for fatigue (W = 209, p = .001). IWA were

on average less alert and more tired than healthy controls at t1 and t2

combined.

2.3 | EEG-based measures

2.3.1 | Experimental paradigm

The EEG measurements took place in a soundproof room with Fara-

day cage. We recorded 64-channel EEG (ActiveTwo, BioSemi,

Amsterdam, NL) at a sampling frequency of 8192 Hz. Participants

were instructed to listen to a 24 min long story while EEG data were

recorded. They were seated 1 m away from a screen and were asked

to look at a fixation cross while listening in order to minimize eye

movement artifacts in the EEG signal (Figure 2a). The story De wilde

zwanen (The Wild Swans), written by Hans Christian Andersen and

narrated by a female Flemish-native speaker, was cut into five parts of

on average 4.84 min (standard deviation [SD]: 9.58 s) each. The

F IGURE 1 Lesion overlap image of
the aphasia sample. The maximum overlap
corresponds to 19 out of the total sample
of 39 individuals with aphasia. Axial slices
are shown in neurological orientation.
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silences in the story were reduced to 200 ms duration and the sample

rate was set to 48 kHz. The software APEX (Francart et al., 2008) was

used to calibrate and present stimuli. The story was presented bilater-

ally via shielded ER-3A insert earphones (Etymotic Research) at an

amplitude of 60 dB SPL (A weighted), except if hearing thresholds

were above 25 dB HL at the PTA, in which case the presentation vol-

ume was augmented (see Section 2.2.1).

After each story part, participants answered a yes/no question

and a multiple choice question about the content of the preceding

story part. As these questions were not validated, we did not assess

them. They were solely introduced in the protocol to make partici-

pants follow the content of the story attentively. Nonetheless, five

participants (four IWA, one control) fell asleep during parts of the EEG

measurement. Given that an awake state is necessary to follow the

contents of a story (such as reflected in linguistic speech

representations; Makov et al., 2017), we decided to exclude these

story parts from the analysis. For one other control participant, a part

of the data was not saved correctly and could thus also not be used

for analysis. This means that for six participants, <24 min of data were

used for analysis (19.36 min of data for one control and one aphasia

participant, 14.52 min for one control and two aphasia participants,

9.68 min for one aphasia participant).

2.3.2 | EEG signal processing

The EEG signal processing was performed in MATLAB (version

9.1.0.441655 [R2016b]). The EEG data of the five story parts

(i.e., epochs) were concatenated. Eye movement artifact removal was

implemented using a multichannel Wiener filter (Somers et al., 2018).

Envelope

Envelope onsets

Word onsets

Phoneme surprisal

Phoneme entropy

Word surprisal

Word frequency

Ver hier vandaan waar zwaluwen naartoe vliegen
Far from here where swallows fly to

(a) EEG experiment set-up

(b) Speech representations extracted from stimulus story

[ENG]

[NL]

am
pl

itu
de

time

am
pl

itu
de

time

ac
ou

st
ic

se
gm

en
ta

tio
n

ph
on

em
e

w
or

d

Phoneme onsets

F IGURE 2 Electroencephalography (EEG) experiment set-up and extraction of speech representations from the stimulus story.
(a) Participants listened to a story in Dutch (Flemish dialect) while EEG data were recorded. They were asked to look at a fixation cross while
listening. The first two phrases of the story are visualized as written text (with an English translation) and audio signal. (b) From the audio signal as
depicted in (a), eight speech representations were extracted that reflect acoustic and linguistic properties of the story.
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The EEG signal was referenced to the common average. For high-pass

filtering, a least squares filter was applied with a filter order of 2000,

with a passband frequency of 0.5 Hz and a stopband frequency of

0.45 Hz. For low-pass filtering, a least squares filter with a filter order

of 2000 was applied with a passband frequency of 25 Hz and a stop-

band frequency of 27.5 Hz. The EEG data were downsampled to

128 Hz and subsequently normalized by subtracting the mean and

dividing by the SD per epoch.

2.3.3 | Neural tracking

To investigate neural tracking, we used a forward modeling approach

(i.e., encoding model), meaning that speech representations were used

to predict the EEG signal (Di Liberto et al., 2015; Holdgraf et al., 2017;

Mesgarani et al., 2014). Here, we were interested in both acoustic and

linguistic speech representations. We relied on eight representations,

which were extracted from the stimulus story (Figure 2b). We consid-

ered the envelope and envelope onsets as acoustic speech represen-

tations. Phoneme and word onsets represented phoneme- and word-

level segmentation of speech. Phoneme surprisal and phoneme

entropy were considered as linguistic representations at the phoneme

level, word surprisal and word frequency at the word level.

Envelope

The envelope was extracted by using a gammatone filter bank of

28 channels with center frequencies between 50 and 5000 Hz. We

applied a power law on the absolute values and averaged across the

28 envelopes (same parameters as in Vanthornhout et al., 2018).

These steps were applied because they model the auditory system's

structure (Biesmans et al., 2017).

Envelope onsets

The envelope onsets were calculated as the half-wave rectification of

the first derivative of the envelope.

Phoneme and word onsets

Phoneme and word onsets were coded as dummy variables with a

pulse at the beginning of each phoneme, respectively of each word. In

order to get there, an aligner (Duchateau et al., 2009) was used to cre-

ate alignment files containing the timing of each phoneme, respec-

tively each word for the audio files of the stimulus story.

Phoneme surprisal

Phoneme surprisal was computed as the negative logarithm of the

phoneme probability in the activated cohort. The activated cohort

refers to words activated by initial phonemes, for example, after hear-

ing the sound /pl/, the activated cohort consists of words such as

play, plus, and plural. Phoneme surprisal is thus a representation of

how surprising a phoneme is given the activated cohort. The first pho-

neme of each word included all words in the active cohort. Phoneme

surprisal was calculated based on the SUBTLEX-NL database

(Keuleers et al., 2010) and a custom pronunciation dictionary.

Phoneme entropy

Phoneme entropy is a measure of the degree of competition between

the words congruent with the current phonemic input. For instance,

after hearing the sounds /pl/, many possible words are present in the

activated cohort (n = 999), mirrored in a high degree of competition.

Yet, after the next phonemes, the number of possible words

decreases (e.g., for /plu/, n = 162 and for /plur/, n = 19), and thus the

activated cohort decreases, reflected in a lower degree of competi-

tion. The degree of competition was computed as the Shannon

entropy of the words in the activated cohort. Again, the first phoneme

of each word included all words in the active cohort.

Phoneme entropy was also calculated based on the SUBTLEX-NL

database (Keuleers et al., 2010) and a custom pronunciation

dictionary.

Word surprisal

Word surprisal was calculated as the negative logarithm of the condi-

tional probability of a given word based on the four previous words.

Word surprisal thus represents how surprising a word is, taking into

account the four previous words. Word surprisal was calculated using

the 5-g model by Verwimp et al. (2019).

Word frequency

Word frequency was calculated as the negative logarithm of the uni-

gram probability and represents how frequently words are used.

Given that we used the negative logarithm, words with a higher fre-

quency are reflected in lower scores. Word frequency was also calcu-

lated using the 5-g model by Verwimp et al. (2019).

Isolating speech processing levels

An issue when analyzing acoustic and linguistic speech representa-

tions is their collinearity, for example, some top-down linguistic cues

at the phoneme and word level are also represented in the speech

envelope, such as word boundaries and syllable stress, which contain

semantic cues. Vice versa, some bottom-up acoustic information is

also present in linguistic phoneme and word level representations

(Gillis et al., 2022), for example, due to amplitude rises and falls defin-

ing the boundaries between (pre-)lexical units. Neural signals related

to acoustic processing can thus also be captured by neural tracking of

linguistic speech representations and vice versa.

In this study, we were interested in disentangling—as far as

possible—different speech processing mechanisms. This is important

should encoding/decoding modeling be used for diagnosing different

language profiles of aphasia in the future, for example, disentangle

individuals that have more problems with acoustic, phonological or

semantic processing. Therefore, we regressed out the variance

explained by the speech representations that we were not interested

in. Specifically, we first applied an ordinary least squares regression

analysis without regularization, using the EEG signal as dependent

variable and speech representations as predictors that share variance

with the representations of interest (Table 2). All the data were used

for training and testing, such that all activity related to the collinear

speech representations was regressed out. As a second step, we then
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used the residual EEG signal of that regression as input for the encod-

ing model in order to model the relationship with the speech repre-

sentations of interest. The constellation of speech representations

used as predictors in the encoding models is illustrated in Table 2.

Computation of temporal response function and prediction accuracy

For the encoding analysis of the speech representation of interest, we

applied the boosting procedure (David et al., 2007). We made use of

the Eelbrain toolbox for this step (https://doi.org/10.5281/zenodo.

6992921; Brodbeck et al., 2021). The data were split into a held-out

test set of roughly 2 min of the data and a training set containing the

rest of the data. The training set was used to perform regression ana-

lyses on the residual EEG signal with the speech representation as

predictor, for a number of time-shifted versions, resulting in the tem-

poral response function (TRF). The number of time-shifted versions

was defined by the chosen integration window length, that is,

�0.1078 to 0.6109 s, and the sampling frequency ([ending time lag-

starting time lag]/[1/sampling frequency]), which resulted in 92 time

shifts. The TRF thus provides information about how the neural

response pattern operates across processing time. This information

and the speech representation were then used to predict EEG signals

for the test set of the data. The predicted EEG signal was correlated

with the originally recorded EEG signal, providing a measure of how

well the speech representation is encoded in the brain for each elec-

trode, hereafter referred to as prediction accuracy. The higher the

prediction accuracy is, the stronger the speech representation is

encoded in the EEG signal. This procedure was repeated for different

partitions of the data into training and test sets, such that each part of

the data was once used as test set, resulting in 12 folds (i.e., k-fold

cross-validation). For the TRF, the 12 folds were averaged across to

get robust outcome measures. To arrive at the final prediction accu-

racy, the folds of the predicted EEG signal were concatenated and

subsequently correlated with the originally recorded EEG signal.

2.3.4 | Determination of the TRF peak latency
ranges

To determine in which time windows to perform cluster-based permuta-

tion tests, we used the built-in MATLAB function findpeaks

(MATLAB, 2016) to identify peaks in the TRF. Peak latencies were

extracted per speech representation and per participant. An arbitrary

range of 150 ms was defined around the average latency of the control

group per identified peak (Table 3). The average latency per peak of the

aphasia group was very similar to the control group (the largest differ-

ence among all peaks was 18 ms), such that the selected ranges were

valid to find differences between the aphasia and control group. For

time ranges that started before 0, the lower bound was set to 0. The

150 ms ranges, as indicated in Table 3 and visualized in Figure S5, were

used as time windows to perform cluster-based permutation tests on

the TRF (Section 2.4 for details). As 26 peaks were found across speech

representations, we conducted 26 cluster-based permutation tests.

2.4 | Statistical analysis

Statistical analyses were performed in R (R Core Team, 2017) and in

the Python (Van Rossum & Drake Jr, 1995) toolbox Eelbrain

(Brodbeck, 2020).

2.4.1 | Group comparison of the strength of neural
tracking

For the prediction accuracy analysis, we averaged across all 64 elec-

trodes and conducted a linear model in R in order to investigate group

differences and to regress out the covariates, that is, average prediction

accuracy �group + age + hearing + cognition + alertness + fatigue. We

repeated this for each of the four encoding models, that is, the acoustic,

phoneme onsets, word onsets, phoneme and word level model. We

checked the normality assumptions using the Shapiro–Wilk test, which

failed to reject H0 for each model. The homogeneity of variances

assumption was not met in any of the five models. Nonetheless, we

TABLE 2 Constellation of speech representations in the four
encoding models.

Regressing out

representations not
of interest

Boosting on residuals

(representations of
interest)

Encoding model/
referred to as

Phoneme onsets

Word onsets

Phoneme surprisal

Phoneme entropy

Word surprisal

Word frequency

Envelope

Envelope onsets

Acoustic

Envelope

Envelope onsets

Phoneme surprisal

Phoneme entropy

Word surprisal

Word frequency

Phoneme Onsets Phoneme-level

segmentation

Envelope

Envelope onsets

Phoneme surprisal

Phoneme entropy

Word surprisal

Word frequency

Word onsets Word-level

segmentation

Envelope

Envelope onsets

Phoneme onsets

Word onsetsa

Phoneme surprisal

Phoneme entropy

Phoneme-level

linguistic

Envelope

Envelope onsets

Phoneme onsets

Word onsetsa

Word surprisal

Word frequency

Word-level

linguistic

aWe decided against regressing out phoneme-level linguistic

representations for the word level model and vice-versa, because we

expected that more data would be needed to get meaningful results from

such an analysis.
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interpreted the linear models, given that the residuals were normally dis-

tributed. As each model was based on a different dataset, we did not

control for multiple comparisons in this analysis.

As a second analysis of the prediction accuracies, we con-

ducted a cluster-based permutation test to see if certain elec-

trodes drive the difference between groups. To this end, we used

the function testnd.TTestIndependent from the Eelbrain toolbox

(https://doi.org/10.5281/zenodo.6992921). The cluster-based permu-

tation test is a mass-univariate independent samples t-test that relies

on bootstrapping (see Gillis et al., 2021, for more details). We defined

a maximum p-value of .05 as threshold. We report the number of elec-

trodes in the significant cluster, the v-value and the p-value.

2.4.2 | Group comparison of the neural response
pattern

To investigate the TRF pattern differences between the control group

and the aphasia group, we applied cluster-based permutation tests in

the arbitrary integration window ranges identified by the peak latency

extraction (Table 3). The same function and parameters were used as

for the prediction accuracy. As there were multiple peaks identified

for each of the eight speech representations, we corrected the p-value

for multiple comparisons within speech representation using the false

discovery rate (FDR). Given that this is an exploratory study, we

report the uncorrected and corrected significance thresholds.

3 | RESULTS

3.1 | Response accuracy to the questions asked
during the EEG paradigm

Participants listened to five story parts of ca. 5 min each while EEG

data were recorded. After each part, a yes/no and a multiple choice

question were asked about the preceding story part. Figure 3 shows

the response accuracy per group separately for the yes/no question

and the multiple choice question. For both types of questions, a signif-

icant group difference was found (Yes/No question: W = 300,

p = .01; Multiple choice question: W = 180, p < .0001). These ques-

tions were however not validated and therefore, this result should not

be interpreted, but instead be seen as descriptive.

3.2 | Prediction accuracy

When averaging the prediction accuracy across all electrodes, we

found a significant group difference in the acoustic model (group

TABLE 3 TRF peak ranges of the control group used for defining
time windows for cluster-based permutation testing.

Speech representation Average peak latency (ms) Range (ms)

Envelope 29 0–104

163 88–238

Envelope onsets 44 0–119

102 27–177

209 134–284

Phoneme onsets 61 0–136

252 177–327

305 230–380

Word onsets 114 39–189

190 115–265

308 233–383

446 371–521

Phoneme surprisal 221 146–296

360 285–435

354 279–429

Phoneme entropy 243 168–318

389 314–464

416 341–491

Word surprisal 122 47–197

199 124–274

320 245–395

428 353–503

Word frequency 122 47–197

197 122–272

330 255–405

459 384–534

Abbreviation: TRF, temporal response function.

F IGURE 3 Response accuracy by
group for the yes/no questions and the
multiple choice questions after each of
the five story parts that served as stimuli
during the EEG measurement. For both
types of questions, a significant group

difference was found.
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effect: F = 7.11, p = .01; Figure 4a). The healthy control group

showed higher prediction accuracies in comparison to the aphasia

group. The group effect was present despite controlling for the influ-

ence of age, hearing, cognition, alertness, fatigue, and lesion size in

the model. None of the covariates significantly explained the predic-

tion accuracies, except for the acoustic model. Neither the phoneme

onset and word onset models nor the phoneme- and word-level lin-

guistic models showed a significant group difference. The results of all

models are reported in Table 5. Additionally, we also report the results

when the covariates are not included in the model (Table 4).

In order to get an idea how the lesion size affects the link

between neural tracking measures and group, we created a hypotheti-

cal, statistical scenario in which IWA would have a lesion size of

0. We did this by comparing the intercept of the linear model average

prediction accuracy � lesion size including IWA only, to the intercept of

the model average prediction accuracy � group including both IWA and

controls. We found that the two intercepts are not significantly differ-

ent for any of the speech representation models (acoustic: p = .71;

phoneme onsets: p = .51; word onsets: p = .80; phoneme linguistic:

p = .72; word linguistic: p = .64). This means that, if IWA had no

lesion (a lesion size of 0), then they would not differ from healthy con-

trols on measures of neural tracking.

The slope coefficient of the model average prediction accuracy �

lesion size including IWA only was not significantly different from

0 for the prediction accuracy models acoustics, word onsets,

phoneme-level linguistics and word-level linguistics (acoustic: p = .08;

word onsets: p = .59; phoneme linguistic: p = .13; word linguistic:

p = .59). The phoneme onset model however showed a slope coeffi-

cient of lesion size that was significantly different from 0 (phoneme

onsets: estimate = �2.35e�05, p = .01), meaning that a larger lesion

size is associated with lower neural tracking scores within the aphasia

group, for the phoneme onset model. A relation between lesion size

and the phoneme onsets model was also found in a correlation analy-

sis within the aphasia group (phoneme onsets model: Spearman's

r = �.355, p = .026; Figure S6).

The cluster-based permutation tests revealed a group difference

for the acoustic model, and additionally provided information about

what cluster of electrodes is driving the difference between the con-

trol group and the aphasia group. Specifically, two clusters were found

to differ between groups (Figure 4b). A frontal left-lateralized cluster

(number of sensors = 9, v = 25.012, p = .02) and a posterior

cluster (number of sensors = 15, v = 44.516, p = .004) both displayed

decreased prediction accuracies in IWA. The phoneme onsets model

revealed one cluster that differed between groups (number of

sensors = 6, v = 15.511, p = .03), namely displaying decreased pre-

diction accuracies in IWA. Neither the word onset model nor the

phoneme- and word-level linguistic models showed any significant

group differences.

Aphasia is a disorder with a heterogeneous phenotype, as was

reflected in the large variability of the language test outcomes (see

Table S1). This made us wonder whether the heterogeneity of lan-

guage levels in the aphasia group may hide subtle effects in group sta-

tistics. Therefore, we decided post hoc to split up the aphasia group

into a more mild and a more severe aphasia group. In Section S1.4, we

repeated the group comparison analyses after splitting up the aphasia

group. The criteria for splitting up the group is described in more

detail in the Supplementary material S1 (also see Figures S7 and S10).

When averaging the prediction accuracy across all electrodes, we

found that the group difference for the acoustic model was not pre-

sent for the comparison of the control and mild aphasia subgroup, but

was present for the comparison of the control group and the aphasia

subgroup with more severe language difficulties (Figure S8A). No

group effects were observed for any of the other four models. The

cluster-based permutation test of the acoustic model showed two

F IGURE 4 Individuals with aphasia
display decreased neural tracking of
acoustic speech representations—across
all electrodes and in local clusters.
(a) When averaging the prediction
accuracies of the acoustic model across all
64 electrodes, we found a significant
group difference, even when we
controlled for age, hearing, cognition,

alertness, and fatigue. The acoustic model
consists of the speech envelope and its
onsets as speech representations. (b) The
cluster-based permutation test revealed
two clusters that significantly differed
between groups, showing lower
prediction accuracies in individuals with
aphasia. The lowest topoplot consists of
the difference between the control group
and the aphasia group and the significant
clusters are contoured.

10 of 19 KRIES ET AL.



almost identical clusters to the ones found in the analyses with two

groups (Figure 4b); however, only for the comparison between the

control group and the aphasia subgroup with more severe language

difficulties (Figure S8B).

3.3 | Temporal response function

For the speech envelope TRF, we found two clusters that differed

between the control and aphasia group around 180 ms (Figure 5 A;

frontal cluster: time(ms) = [95243], number of sensors = 28,

v = 561.96, p = .001; posterior cluster: time(ms) = [142243], number

of sensors = 18, v = �425.69, p = .005). The two clusters are similar

to the clusters from the prediction accuracy of the acoustic model

(Figure 4b). After correction for multiple comparisons via FDR (for

n = 2 comparisons due to the tested time ranges per speech repre-

sentations, see Table 3), these results remained significant (frontal left:

p = .002; posterior: p = .01). Looking at the neural response to pho-

neme onsets, we found a cluster that differed between the control

group and the aphasia group over frontal electrodes around 280 ms

(time [ms] = [235384], number of sensors = 11, v = 240.58, p = .04).

This group effect in the neural response to phoneme onsets did not

survive correction for multiple comparisons.

No group difference clusters were found for the speech represen-

tations envelope onsets, phoneme surprisal and phoneme entropy.

However, for the speech representations at the word level, that is,

word onsets and word surprisal, displayed clusters that differed

between groups were observed (Figure 5c,d). The neural response

patterns to word onsets displayed two clusters that differed between

the control and aphasia group around 195 ms (frontal left-lateralized

cluster: time [ms] = [134243], number of sensors = 10, v = �220.3,

p = .03; posterior cluster: time [ms] = [118267], number of

sensors = 14, v = 267.25, p = .016). The neural response patterns to

word surprisal displayed a cluster that differed between the control

and aphasia group that spread across two negative peaks, around

135 ms (difference in posterior left electrodes) and around 195 ms

(difference in frontal left electrodes; time [ms] = [56204], number of

sensors = 21, v = �227.94, p = .01). None of these effects survived

the correction for multiple comparisons via FDR.

Same as for the prediction accuracy, we split up the aphasia group

into a mild aphasia subgroup and an aphasia subgroup with more

severe language difficulties and repeated these analyses for explor-

atory purposes in Figure S9. For the envelope TRF, we found that the

control group and aphasia subgroup with more severe language

impairments, but not the control and mild aphasia subgroup, showed

a significantly different neural response pattern in two similar clusters

as were found in the group comparison with the full aphasia group

(Figure S9). This difference in clusters occurred as well around

180 ms, same as in the comparison of the control and full aphasia

group. For the envelope onsets TRF, a group difference was found

around 200 ms between the control group and the more severe apha-

sia subgroup. Moreover, the word-level representations also showed

significantly different clusters between the control group and more

severe aphasia subgroup, but not between the control and mild apha-

sia subgroup. However, these differences in clusters were found in a

later time window than the clusters found in the group comparison

between the control and the full aphasia group (200 ms), namely

around 360–370 ms. In all three speech representations, that is, word

onsets, word surprisal and word frequency, these later clusters

occurred over left-lateralized temporal electrodes (Figure S9). None of

the other speech representations, that is, phoneme onsets, phoneme

surprisal and phoneme entropy, showed any significantly different

clusters, in neither of the two pair-wise group comparisons.

4 | DISCUSSION

In this study, we investigated whether IWA display different neural

tracking of continuous speech than age-matched healthy controls at

multiple processing levels (acoustic to linguistic). To this end, we col-

lected EEG data of 39 IWA and 24 healthy controls while they lis-

tened to a continuous narrative. Speech representations were derived

from the narrative and their relation to the EEG signal studied. When

the neural signals align with the speech properties, this is referred to

TABLE 4 Group comparison results
on the prediction accuracy models
(without covariates).

Effect Adj. R2 df F Estimate Standard error p

Acoustic

Group 0.103 (1,61) 8.12 �0.00 0.002 .006

Phoneme onsets

Group 0.032 (1,61) 3.10 �0.00 0.00 .083

Word onsets

Group 0.005 (1,61) 1.34 �0.00 0.00 .251

Phoneme-level linguistics

Group 0.014 (1,61) 1.94 �0.00 0.00 .168

Word-level linguistics

Group 0.02 (1,61) 2.27 �0.00 0.00 .137

Note: df= degrees of freedom; significant effects are marked in bold.
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as neural tracking. This approach allows to explore how spatiotempo-

ral neural response patterns operate during continuous speech at mul-

tiple processing levels (i.e., TRFs). Further, this method provides a

measure of how well speech representations are encoded in the EEG

data (i.e., prediction accuracy). Concerning prediction accuracies,

group differences between IWA and healthy controls were found for

processing acoustic speech representations, both located in posterior

and frontal clusters (Figure 4). Regarding TRFs, group differences in

processing acoustic, segmentation and word-level speech representa-

tions were observed at different peaks between 135 and 280 ms,

TABLE 5 Results of the group effect
and covariates on the prediction accuracy
models.

Effect Adj. R2 df F Estimate Standard error p

Acoustic

Model performance 0.083 (6, 52) 1.885 0.013 .1

Group 1 7.11 �0.00 0.00 .01

Age 1 0.16 0.00 0.00 .69

Hearing 1 0.05 0.00 0.00 .82

Cognition 1 0.16 0.00 0.00 .69

Alertness 1 3.58 0.00 0.00 .06

Fatigue 1 0.25 0.00 0.00 .61

Phoneme onsets

Model performance 0.047 (6, 52) 1.483 0.004 .2

Group 1 3.06 �0.00 0.00 .08

Age 1 0.69 �0.00 0.00 .40

Hearing 1 3.09 0.00 0.00 .08

Cognition 1 0.69 0.00 0.00 .40

Alertness 1 0.12 0.00 0.00 .73

Fatigue 1 1.25 �0.00 0.00 .26

Word onsets

Model performance �0.038 (6, 52) 0.638 0.004 .69

Group 1 1.58 �0.00 0.00 .21

Age 1 0.28 �0.00 0.00 .59

Hearing 1 0.94 0.00 0.00 .33

Cognition 1 0.26 �0.00 0.00 .61

Alertness 1 0.69 0.00 0.00 .41

Fatigue 1 0.08 �0.00 0.00 .77

Phoneme-level linguistics

Model performance 0.002 (6, 52) 1.024 0.005 .42

Group 1 2.60 �0.00 0.00 .11

Age 1 0.00 �0.00 0.00 .97

Hearing 1 1.79 0.00 0.00 .18

Cognition 1 0.53 �0.00 0.00 .47

Alertness 1 0.36 0.00 0.00 .55

Fatigue 1 0.86 �0.00 0.00 .3568

Word-level linguistics

Model performance �0.01 (6, 52) 0.903 0.004 .49

Group 1 2.46 �0.00 0.00 .12

Age 1 0.46 0.00 0.00 .49

Hearing 1 1.40 0.00 0.00 .24

Cognition 1 0.15 �0.00 0.00 .70

Alertness 1 0.26 0.00 0.00 .61

Fatigue 1 0.69 �0.00 0.00 .40

Note: df, degrees of freedom; significant effects are marked in bold.
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located in frontal, left-lateralized or posterior regions (Figure 5). How-

ever, as there were multiple TRF peaks identified per speech repre-

sentation, we corrected for multiple comparisons and found that only

the clusters identified in the envelope TRF were robust group differ-

ences. Nonetheless, as this is an exploratory study, we will discuss all

findings here, because they can help to elicit more concrete hypothe-

ses in future investigations.

To date, neural tracking of acoustic and linguistic speech repre-

sentations has not yet been investigated in poststroke aphasia. A

study in individuals with PPA, a form of dementia that surfaces as lan-

guage impairment in its initial stages, has however reported increased

speech envelope tracking in the theta frequency band compared with

healthy controls (Dial et al., 2021). The authors hypothesized that the

increased envelope tracking is related to the underlying physiological

changes in PPA, that is, a hypersynchrony between frontal and tem-

poroparietal cortex as well as a hyperactivity in the frontal cortex

(Dial et al., 2021). Given the fundamentally different etiologies of

aphasia after stroke and PPA, we did not base any hypotheses on this

study. Indeed, we found a rather contrasting pattern of results in this

study, namely decreased acoustic neural tracking in IWA after stroke

(Figure 4a,b). We controlled for the variance explained by segmenta-

tion and linguistic speech representations in the acoustic model in

order to yield a purer measure of acoustic processing. The observed

group difference was also present despite controlling for the variance

F IGURE 5 Individuals with
aphasia show reduced neural
response amplitudes to acoustic and
linguistic speech representations in
local clusters. In each of the four
panels, the control and aphasia group
average temporal response functions
(TRFs) are plotted. For the left-sided
figures, we averaged across the

electrodes in the identified clusters
and the grey bar indicates the time
window in wich the groups
significantly differed fromm each
other. For the right-sided figures, the
topoplots are shown at the indicated
time point. The last topoplot on each
panel displays the difference
between the control group and the
aphasia group, with the clusters being
contoured. (a) The neural response
pattern to the speech envelope
revealed two clusters around 180 ms,
a frontal one (visualized) and a
posterior one (not visualized). (b) The
neural response pattern to the
phoneme onsets revealed a frontal
cluster around 280 ms. (c) The neural
response pattern to the word onsets
revealed two clusters around 195 ms,
a frontal one (not visualized) and a
posterior one (visualized). (d) The
neural response pattern to word
surprisal revealed a cluster with two
peaks, a posterior peak around
135 ms and a frontal peak around
195 ms (amplitudes of this latter peak
are visualized in the topoplots). Only
the effect of the envelope was robust
against correction for multiple
comparisons.
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explained by age, hearing, cognition, alertness and fatigue. Covariates

did not significantly explain any part of the variance in the acoustic

model.

The envelope TRF confirms the finding of the acoustic prediction

accuracy model, namely decreased amplitudes in IWA over left frontal

and posterior electrodes, additionally revealing that this difference

occurred around 180 ms neural processing time. These results may

indicate that IWA track the slow amplitude modulations of speech,

which are essential for speech understanding (Oganian &

Chang, 2019; Shannon et al., 1995; Xu & Pfingst, 2008; Zeng

et al., 2005), to a lesser extent than age-matched healthy controls.

Due to controlling the variance explained by the segmentation and lin-

guistic speech representations, the envelope TRF mainly contains the

response to acoustic properties of speech. This would mean that IWA

also show impaired processing of speech acoustics. This is in line with

findings from Kries et al. (2023), who found that 76% of IWA had a

low-level acoustic or phonemic processing impairment.

At the sublexical and lexical segmentation level, we did not find a

significant group difference. However, the TRF analysis revealed

locally decreased amplitudes in the neural response to phoneme

onsets in IWA at a peak around 280 ms as well as in the neural

response to word onsets at a peak around 195 ms. These findings

may indicate that IWA have a decreased performance when it comes

to parsing continuous speech. Humans segment continuous speech by

making use of strategies such as analysis of prosodic contours (bot-

tom-up processes), making use of knowledge about distributional pro-

cessing of phonological information and about statistical regularities

in word-to-object co-occurrences (top-down processes; Fló

et al., 2019; Smith & Yu, 2008; Suanda et al., 2014; Thiessen &

Erickson, 2013). Thus, sub-lexical and lexical segmentation of continu-

ous speech is a product of the interplay between bottom-up and top-

down processes (David et al., 2007; Gaspers et al., 2017; Shuai

et al., 2014). Based on the current findings, these processes that are

necessary for speech segmentation may be impaired in IWA.

EEG experiments that examined ERPs have found the N400 to be

related to semantic activation and integration into the sentence con-

text (Kuperberg & Jaeger, 2016). N400 studies in IWA reported that

IWA in comparison to healthy controls have increased latencies of the

N400 (Chang et al., 2016; Kawohl et al., 2010; Khachatryan

et al., 2017; Lice & Palmovi�c, 2017; Sheppard et al., 2017) and attenu-

ated amplitudes (Kielar et al., 2012; Lice & Palmovi�c, 2017; Räling

et al., 2016; Robson et al., 2017; Sheppard et al., 2017). Given the

similarity between the N400 effects and the neural response pattern

to word surprisal (Lopopolo & Rabovsky, 2022; Michaelov &

Bergen, 2020), we hypothesized to see differences at the linguistic

word level (i.e., word surprisal and word frequency) at a time window

between 350 and 450 ms. However, we did not find a group differ-

ence in the time window of the N400 in the word surprisal and word

frequency TRFs. This may be due to the fact that older adults gener-

ally seem to have reduced neural tracking of linguistic speech repre-

sentations (Gillis et al., 2023). All participants in this study, healthy

age-matched controls as well as IWA, were on average 70 years old.

Older adults may use different strategies to process lexical meaning

than those captured by word surprisal and word frequency

(Federmeier et al., 2002; Gillis et al., 2023; Spreng & Turner, 2019;

Wlotko et al., 2010). More research is needed to determine an ideal

set of speech representations to capture semantic processing in

healthy older adults, which can subsequently be translated to aphasia

research. Another option that may explain why no group difference

was found in the target time window of word-level contextual speech

properties (i.e., 350–450 ms) is that the heterogeneity within the

aphasia group may have masked potential effects. Our exploratory,

supplementary analysis with two aphasia subgroups—one with milder

or compensated language impairments and one with more severe lan-

guage impairments—displayed significant differences between the

control group and the more severe aphasia group in word surprisal

and word frequency TRFs at 360–370 ms, thus falling within the

N400 time window.

Surprisingly, we found that IWA have decreased amplitudes in

the word surprisal TRF around 200 ms. This peak is in line results from

Gillis et al. (2023), where it was present in older, but not younger

adults. This peak may be related to lexical segmentation, since the

word onsets TRF also showed a group difference at the same latency

and over similar electrodes. While we regressed out the influence of

word onsets to analyze the response to word surprisal and word fre-

quency and vice-versa, the pulses in the word surprisal and word

frequency speech representations were set at the beginning of the

word and thus inherently also relate to a certain extent to lexical

segmentation.

The IWA that participated in this study all had a left-hemispheric

or bilateral lesion caused by stroke and the data were collected in the

chronic phase after stroke (i.e., ≥6 months), the median time that had

passed since stroke onset being 16 months. Stroke can cause changes

in cerebral blood flow (Brumm et al., 2010; Rabiller et al., 2015) and

can create cavities filled with cerebrospinal fluid at the lesion site

(Piastra et al., 2022; Zbesko et al., 2018). Especially the latter mecha-

nism prevails also into the chronic phase after stroke (Piastra

et al., 2022; Salinet et al., 2014; Zbesko et al., 2018). Both aspects can

impact the conductivity of the neurophysiological activity that is

picked up by the EEG, which can lead to asymmetries in topography

or changes in specific frequency bands (Cassidy et al., 2020; Cohen

et al., 2015; Park et al., 2016; Vorwerk et al., 2014). Therefore, in the

following paragraph, we will discuss whether the decreased neural

tracking effects that we observed in IWA may be related to these

underlying anatomical changes that occur after stroke and influence

the EEG signal or whether they are indeed a trace of decreased pro-

cessing of speech.

Many of the clusters that differed between healthy controls and

IWA occurred over left-sided electrodes (Figures 4 and 5). This region

coincides with the region that is impacted by left-hemispheric lesions

in the area supplied by the middle cerebral artery, which is the lesion

location for 79% of IWA in this study (Figure 1 and Table S1). Thus,

the lesion and hence, the altered conductivity, may influence the EEG

signal over these electrodes. While the EEG analysis method that we

used here is not a direct measure of the raw EEG signal—as is the case

for ERPs—the altered conductivity may still affect measures of neural
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tracking over lesion sites. The prediction accuracies are computed as

the correlation between the recorded EEG signal and the EEG signal

predicted via modeling of the TRF and the speech representation. This

correlation does not take into account the absolute amplitude of the

signals it compares. However, since the signal-to-noise ratio of

the EEG signal recorded over the lesion site is most likely lower than

for other electrodes, the prediction it makes will be more noisy too,

resulting in a lower prediction accuracy. TRF amplitudes are addition-

ally more directly influenced by the recorded EEG amplitude. Thus,

theoretically neural tracking of speech properties can be impacted by

the lesion-induced changes in conductivity of the neurophysiological

activity. We tested whether we would find a group difference when

the lesion size is regressed out for the aphasia group (Section 3.2). We

found that if IWA had no lesion, then they would not differ from con-

trols. We also found for the phoneme onsets model that the larger

the lesion size is, the lower the neural tracking scores within the apha-

sia group are. Together with the main results, this indicates that the

altered conductivity over the stroke lesion site, and in part probably

also a difference in processing slow amplitude modulations of speech

may jointly explain the lower neural tracking in the aphasia group. It

should however be noted that this study was not designed to deter-

mine what factors cause the group difference in neural tracking.

Some of the clusters in which the neural response amplitude sig-

nificantly differs between groups (Figures 4b and 5) occurred over

posterior electrodes. We can only speculate about these posterior

clusters. As shown in Section S1.5, IWA with a posterior lesion do not

explain the occurrence of the posterior clusters (Figure S11). One pos-

sibility is that the large lesion overlap of IWA in the left inferior frontal

gyrus (Figure 1), mixed with lower speech processing-related activity

in those areas, led to lower measures of neural tracking over those

electrodes. This resulted in a slight asymmetry with higher amplitudes

over anterior right-sided electrodes. The control group on the other

hand showed a slight asymmetry with higher amplitudes over anterior

left-sided electrodes. These asymmetries in both groups slightly

change the dipole orientation in opposite directions. When the

aphasia group topography is subtracted from the control group topog-

raphy, it consequently results in larger differences over anterior left-

sided electrodes and over posterior right-sided electrodes.

5 | CONCLUSIONS AND FUTURE
OUTLOOK

In sum, our results show that measurements of neural tracking to spe-

cific speech properties may be a promising avenue for future diagnos-

tic and therapeutic applications. Especially the decrease in IWA in

processing of acoustic cues, such as the amplitude fluctuations and

the onsets of phonemes and words, seems to be a robust effect.

Future studies may confirm the potential role of neural tracking of

acoustic and linguistic speech representations to provide profiles

of language processing difficulties in IWA (i.e., acoustic, phonological,

semantic). However, confounding factors, such as effects of the

stroke lesion on the EEG signal need to be taken into account in

future investigations of neural tracking of speech in aphasia. An inter-

esting approach to address this issue could be the recruitment of a

control group consisting of individuals with a stroke without aphasia.

Once neural tracking in aphasia is better understood, the applica-

tion potential of this method could be manifold. A study that is cur-

rently in preparation found that IWA can be distinguished from

healthy controls with 83% accuracy based on neural envelope tracking

with mutual information of only 5–7 min of EEG data (De Clercq

et al., 2023). Looking a step further into the future, an aphasia diagno-

sis based on processing levels of different speech representations

could complement behavioral diagnosis and inform speech-language

pathologists further which functions should be trained in therapy.

Test–retest practice effects (i.e., improved performance on repeated

tests due to remembering items or training test-specific skills) could

be avoided during therapy follow-up. Moreover, the method could be

useful in the acute phase after stroke, when behavioral diagnostic

tests are too exhausting for patients. This would still have to be tested

in a clinically more compatible experimental setting in the future, but

work by De Clercq et al. (2023) shows that only few minutes of

recording time would be needed to get reliable data. Additionally,

articulatory speech representations (e.g., mouth aperture, tongue pro-

trusion; Mitra et al., 2010) could be investigated to analyze effects of

production impairments in aphasia during listening. Further, studying

neural processing during speech production, using the same analytical

framework, also offers a possibility to study fluency impairments in

IWA. Due to the feasibility of EEG in the clinical context, the effi-

ciency of the paradigm and the versatility of applications, examining

neural tracking of naturalistic, continuous speech provides a powerful

approach to studying aphasia.
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